王振恒,男,1983年10月出生,博士,讲师。主要从事化工和矿业的过程控制、过程监测和故障诊断、过程质量预测与建模等领域的研究工作。近年来,主持湖南省教育厅一般项目,参与国家863计划项目、973计划项目,加拿大NSERC项目、国家自然科学基金面上项目、湖南省自然科学基金面上项目等多项。在国内外学术期刊和国际学术会议上发表学术论文10余篇,其中SCI收录7篇。
n 学习经历
2009.09-2014.04,劳伦森大学(加拿大),自然资源工程,博士研究生
2006.09-2009.06,北京化工大学,控制理论与控制工程,硕士研究生
2002.09-2006.06,北京化工大学,自动化,本科/学士
n 科研项目
[1] 湖南省教育厅一般项目“基于数据驱动的粒子滤波故障预测与健康管理的系统设计”,项目编号:19C0759,研究年度:2020.06-2022.12,项目负责人
n 学术论文
[1] 王振恒,基于Multiblock-PLS的工业铜矿杂质去除过程故障诊断,2017年中国过程系统工程年会(PSE2017),昆明,2017.7.25-2017.7.27
[2] Z. Wang, S. Wiebe and H. Shang, “Fault detection and diagnosis of an industrial copper electrowinning process,” Canadian Journal of Chemical Engineering,vol 94,pp 415-423,2016.
[3] Z. Wang, H. Shang, “Kalman filter based fault detection for two-dimensional systems,” Journal of Process Control, vol. 28, pp. 83-94, 2015.
[4] Z. Wang, H. Shang,, “Observer based fault detection for two dimensional systems described by Roesser models,” Multidimensional Systems and Signal Processing, vol. 26, no. 3, pp753-775, 2014.
[5] Z. Wang, J. Zhao and H. Shang, “A hybrid fault diagnosis strategy for chemical process startups,” Journal of Process Control, vol. 28, pp. 83-94, 2012
[6] 王振恒,赵劲松,精馏塔开车过程混合故障诊断研究,华东理工大学学报(自然科学版),2009,35(4):639-643
[7] 王振恒,赵劲松,李昌磊,一种新的间歇过程故障诊断策略,化工学报,2008,59(11):2837-2842.
[8] Z. Wang, H. Shang, “Model-based fault detection for two dimensional systems using polynomial matrix transformation,” 61st Canadian Chemical Engineering Conference in London,Canada,2011.10.23-2011.10.26.
[9] 王振恒,赵劲松,精馏塔开车过程混合故障诊断研究,2008年中国过程系统工程年会(PSE2008),上海,2008.9.19-2008.9.21
[10] Z. Liu, X. Meng, L. Wei, L. Chen,B. Lu, Z. Wang, and L. Chen, “A Regularized LSTM Method for Predicting Remaining Useful Life of Rolling Bearing,” IJAC-2020-07-178.R1, 2021.
[11] J. Liu, J. Wang, W. Yu, Z. Wang, and G. Zhong, “Open-circuit fault diagnosis of traction inverter based on improved convolutional neural network,” Journal of Physics: Conference Series, Vol 1633,012099, 2020.
[12] J. Sun, J. Wang, W. Yu, Z. Wang, and Y. Wang, " Power Load Disaggregation of Households with Solar Panels Based on an Improved Long Short-term Memory Network," Journal of Electrical Engineering & Technology, vol 15, pp. 2401-2413,2020.
[13] J. Wang, Y. Dou, Z. Wang, and D. Jiang, “Multi-fault diagnosis method for wind power generation system based on recurrent neural network,” The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, vol. 233, no. 5, pp. 604-615, 2019.
[14] H. Shang,B. Zhang,Z. Wang and J.A. Scott,“Feedforward control for an industrial nickel smelter roaster off-gas system”,19th International Congress of Chemical and Process Engineering in Prague,Czech Republic,2010.8.28-2010.9.1